ENG1001 Engineering Mathematics

ENG1001, Chapter 1 - First-Order ODEs

Chapter 1. First-Order ODEs

Contents:

- 1.1 Basic Concepts
- 1.3 Separable Differential Equations
- 1.4 Exact Differential Equations, Integrating Factors
- 1.5 Linear Differential Equations, Bernoulli Equations
- 1.6 Orthogonal Trajectories

Questions?: First-Order

ODEs: Ordinary Differential Equations

ENG1001, Chapter 1 - First-Order ODEs

<u>.</u>

1.1 Basic Concepts

Ordinary Differential Equation (ODE):

Contains one or several derivatives of an unknown function one independent variable

Ex) unknown function y(x)

- (1) $y'\cos x$,
- (2) y'' + 9y = 0
- (3) $y'y''' \frac{3}{2}y'^2 = 0$

Note: $y' = \frac{dy}{dx}$: derivative

▶ ODE vs PDE

tips: ODE-상미분방정식, PDE-편미분방정식

ENG1001, Chapter 1 - First-Order ODEs

3

■ Partial Differential Equation (PDE):

Involves an unknown function of two or more independent variables and its partial derivatives

More complex than ODE (will be covered in Chapter 12)

Ex)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

It is called Laplace Equation (Soil Mechanics)

To get Abeek Credit, Engineering Mathematics II is mandatory.

ENG1001, Chapter 1 - First-Order ODEs

Order of Differential Equation:

The highest derivative that appears in the equations

$$(1) y' = \cos x,$$

$$(2) y'' + 9y = 0,$$

(3)
$$y'y''' - \frac{3}{2}y'^2 = 0$$

■ First-order (Ordinary) Differential Equation (p.4):

Consists of unknown function (y), its derivative (y'), and variable (x)

$$\Rightarrow$$
 $F(x, y, y') = 0$, or $y' = f(x, y)$

▶ Implicit solution:
$$F(x, y, y') = 0$$

▶ Explicit solution:
$$y' = f(x, y)$$

tips: order n - derivative의 최대 차수

_

Concept of Solution (p.4)

A function y=h(x) is called a solution of a given first-order differential equation F(x, y, y') = 0, on some open interval a<x
b, if h(x) is defined and differential throughout the interval

► Explicit solution :
$$y' = f(x, y)$$

Ex)
$$xy' = 2y \Rightarrow y = x^2$$

▶ Implicit solution :
$$F(x, y, y') = 0$$

Ex)
$$yy' = -x \implies x^2 + y^2 = 1 \quad (x^2 + y^2 - 1) = 0 \quad (y > 0, -1 < x < 1)$$

ENG1001, Chapter 1 - First-Order ODEs

■ Concept of Solutions (Continued)

► General Solution: contains an arbitrary constant (c)

$$\exists x \in \mathbb{R}$$
 $y' = \cos x \Rightarrow y = \sin x + c$

▶ Particular Solution: contains a specific constant (c = 2)

$$F_X$$
) $y' = \cos x \Rightarrow y = \sin x + 2$

tips: general solution - 일반해 particular solution - 특해

ENG1001, Chapter 1 - First-Order ODEs

7

■ Modeling (p.6)

Applications: Many physical laws and principles appear mathematically in the form of differential equations

Initial value problems: differential equations with an initial condition obtain particular solution from general solution

$$y' = f(x, y), \quad y(x_0) = y_0$$

Modeling: physical systems ⇒ mathematical formulation and analysis (자연현상의 문제를 Equation으로)

Step1. Setting up a mathematical model

Step2. General Solution Step3. Particular Solution

Step4. Check the results

ENG1001, Chapter 1 - First-Order ODEs

Ex. 5 (p.7): Radioactivity, Exponential Decay

Given:

- 1. Decomposition rate of a radioactive substance is proportional to the amount present.
- 2. Initially, 0.5 gram of radioactive substance is present.

Solution:

Unknown Function: y(t)

(y = the amount of a radioactive substance, t = time)

Step 1: Setting up a mathematical model of the physical process (modeling)

1.:

2.:

ENG1001, Chapter 1 - First-Order ODEs

9

Step 2: Solving Differential Equation (General Solution)

Step 3: Determination of a particular solution from an initial condition

Step 4: Checking

 $y = 0.5 e^{kt}$, with k = -1.5 as an example)

1.3 Separable ODEs. Modeling

** Separable vs non-separable ⇒ reduce to separable form

■ Separable Differential Equations:

Separate the variables x (on the right) and y (on the left) tips: 분리해서 푼다 (x는 x대로, y는 y대로)

■ Solution: Integrate on both sides with respect to x

 \Rightarrow if f and g are continuous functions, the integrals will exist.

ENG1001, Chapter 1 - First-Order ODEs

11

■ Solving Procedure

Step 1. Separate the variables

Step 2. Integrate both sides

Step 3. Rearrange in explicit (or implicit) forms

ENG1001, Chapter 1 - First-Order ODEs

Ex. 3 (p. 13): Initial Value Problem y' = -2xy, y(0) = 1.8

$$\frac{y'}{y} = -2x$$
 \Rightarrow $\frac{dy/dx}{y} = -2x$ \Rightarrow $\frac{dy}{y} = -2xdx$ (Step 1)

$$\Rightarrow \int \frac{1}{y} dy = \int -2x dx + c \qquad \Rightarrow \quad \ln|y| = -x^2 + c^* \qquad \text{(Step 2)}$$

$$\Rightarrow y = e^{-x^2 + c^*} = ce^{-x^2}$$
 (Step 3)

$$y(0) = ce^0 = c = 1.8$$
 (Initial Value)

 $\Rightarrow y = 1.8e^{-x^2}$

Fig. 8. Solutions of y' = -2xy ("bell-shaped curves") in the upper half-plane

ENG1001, Chapter 1 - First-Order ODEs

Normal distribution

■ Modeling (p.13):

Natural or Engineered Systems ⇒ Mathematical Formulation and Analysis

Ex 5. (p.14): Mixing Problem (Environmental, Geoenvironmental, Hydrology)
The tank contains 1000 gal of water in which initially 100 lb of salt are dissolved.
Brine runs in at a rate of 10gal/min, and each gallon contains 5 lb of dissolved salt

The mixture in the tank is kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

Step 1: Setting up a Model

y: the amount of salt in the tank at time t

Mass (Salt) balance: Rate of salt change (dy/dt=y') = Inflow salt - Outflow salt

Inflow salt = Outflow salt =

ENG1001, Chapter 1 - First-Order ODEs

15

 \Rightarrow

Step 2: Solution of Model (Separable Variables)

$$y' = -0.01(y - 5000) \Rightarrow \frac{y'}{y - 5000} = -0.01 \Rightarrow \frac{dy}{y - 5000} = -0.01dt$$

$$\int \frac{1}{y - 5000} dy = \int -0.01dt + c^* \Rightarrow \ln|y - 5000| = -0.01t + c^*$$

$$\Rightarrow y - 5000 = e^{-0.01t} e^{c^*} = ce^{-0.01t}$$

$$\Rightarrow y = 5000 + ce^{-0.01t}$$

Step 3: Determination of a particular solution from an initial condition

$$y(0) = 5000 + ce^{0} = 5000 + c = 100 \implies c = -4900$$

 $y = 5000 - 4900e^{-0.01t}$

ENG1001, Chapter 1 - First-Order ODEs

■ Extended Method: Reduction to Separable Form (p.17)

Certain differential equations are not separable, but can be made separable by the introduction of a new unknown function.

Differential equation y'=f(y/x) such as $\sin(\frac{y}{x})$

Set
$$u = y/x$$

 $\Rightarrow y = ux \Rightarrow y' = (ux)'$ (introduction of u)
 $y' = f(y/x) \Rightarrow u'x + u = f(u) \Rightarrow u'x = f(u) - u \Rightarrow \frac{du}{f(u) - u} = \frac{dx}{x}$
 $\Rightarrow \int \frac{1}{f(u) - u} du = \int \frac{1}{x} dx + c$

ENG1001, Chapter 1 - First-Order ODEs

Ex 8. (p.18):
$$2xyy' = y^2 - x^2$$

 $2xyy' = y^2 - x^2 \implies y' = \frac{1}{2}(\frac{y}{x} - \frac{x}{y})$

ENG1001, Chapter 1 - First-Order ODEs

10

General solution (family of circles) in Example 6

A family of circles passing through the origin with centers on the x-axis

ENG1001, Chapter 1 - First-Order ODEs

1.4 Exact ODEs. Integrating Factors

Exact vs Nonexact

ENG1001, Chapter 1 - First-Order ODEs

21

■ Exact Differential Equation

$$u(x,y) = c \implies du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = 0$$
$$\frac{\partial u}{\partial x} = M(x,y), \quad \frac{\partial u}{\partial y} = N(x,y)$$
$$M(x,y)dx + N(x,y)dy = 0$$

■ Conditions (necessary and sufficient) for Exact Differential Equation

$$M(x,y) = \frac{\partial u}{\partial x} \implies \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x}\right) = \frac{\partial^2 u}{\partial x \partial y}$$

$$N(x,y) = \frac{\partial u}{\partial y} \implies \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y}\right) = \frac{\partial^2 u}{\partial x \partial y}$$

$$\implies \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{(Test for Exactness)}$$

ENG1001, Chapter 1 - First-Order ODEs

■ Solution of Exact Differential Equation

$$M(x,y) = \frac{\partial u}{\partial x}$$

$$\Rightarrow u(x,y) = \int M(x,y)dx + k(y) = c$$

$$N(x,y) = \frac{\partial u}{\partial y}$$

$$\Rightarrow u(x,y) = \int N(x,y)dy + l(x) = c$$

$$\frac{\partial u}{\partial y} = \underbrace{\qquad}_{+} \frac{\partial k(y)}{\partial y} = N$$

$$\frac{\partial u}{\partial x} = \underbrace{\qquad}_{+} \frac{\partial l(x)}{\partial x} = M$$

to find k(y)

ENG1001, Chapter 1 - First-Order ODEs

Ex 1. (p.22): An Exact ODE

Solve
$$\cos(x+y)dx + (3y^2 + 2y + \cos(x+y))dy = 0$$

■ Reduction to Exact Form. Integrating Factors (p.23)

If the differential equation is not exact, make it to be exact by multiplying F(x,y) integrating factor

$$M(x, y)dx + N(x, y)dy = 0$$
 Exact

$$P(x, y)dx + Q(x, y)dy = 0$$
 Non-exact

$$\Rightarrow F(x, y)P(x, y)dx + F(x, y)Q(x, y)dy = 0$$
 Exact

ENG1001, Chapter 1 - First-Order ODEs

Ex 3. (p. 23):
$$-ydx + xdy = 0$$

 $M = -y, N = x$
 $\partial M / \partial y = -1, \quad \partial N / \partial x = 1 \implies \text{Non-exact}$

By multiplying by $1/x^2$ (integrating factor)

$$\Rightarrow -\frac{y}{x^2}dx + \frac{1}{x}dy = 0$$

$$\Rightarrow M = -\frac{y}{x^2}, \quad N = \frac{1}{x}$$

$$\Rightarrow \frac{\partial M}{\partial y} = -\frac{1}{x^2}, \quad \frac{\partial N}{\partial x} = -\frac{1}{x^2} \Rightarrow \text{ Exact!!}$$

ENG1001, Chapter 1 - First-Order ODEs

27

■ How to Find Integrating Factors (p.24)

FPdx + FQdy = 0 (Exact Differential Equation)

$$\Rightarrow \frac{\partial}{\partial y}(FP) = \frac{\partial}{\partial x}(FQ)$$

$$\Rightarrow \frac{\partial F}{\partial y}P + F\frac{\partial P}{\partial y} = \frac{\partial F}{\partial x}Q + F\frac{\partial Q}{\partial x}$$

$$\Rightarrow F_{y}P + FP_{y} = F_{x}Q + FQ_{x} \quad (F_{x} = dF/dx, F_{y} = dF/dy,...)$$

Golden Rule:

Look for an integrating factor depending only on one variable (x or y)

ENG1001, Chapter 1 - First-Order ODEs

► Case 1: Integrating factor *F(x)* (Theorem 1)

Since
$$F_y = dF/dy = 0$$

 $\Rightarrow F_y P + FP_y = F_x Q + FQ_x \Rightarrow FP_y = F'Q + FQ_x \quad (F_x = F')$

Dividing by FQ

$$\Rightarrow \frac{P_{y}}{Q} = \frac{F'}{F} + \frac{Q_{x}}{Q} \Rightarrow \frac{1}{F} \frac{dF}{dx} = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

$$\text{Set} \quad R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

?
$$\frac{1}{F}\frac{dF}{dx}$$
 $R(x)$? $\ln|F|$ $\Re(x)dx + c$? $F(x) = \exp(-R(x)dx)$

Separable ODE (sec 1.3)

ENG1001, Chapter 1 - First-Order ODEs

..

Summary of Integrating Factor

► Case 1: Integrating factor F(x) (Theorem 1)

Set
$$R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$
.
 $\Rightarrow \frac{1}{F} \frac{dF}{dx} = R(x) \Rightarrow \ln |F| = \int R(x) dx + c \Rightarrow \therefore F(x) = \exp(\int R(x) dx)$

► Case 2: Integrating factor *F(y)* (Theorem 2)

Similar to F(x)

$$R^*(y) = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

$$F^*(y) = \exp(\int R^*(y)dy)$$

ENG1001, Chapter 1 - First-Order ODEs

Ex. 5 (p.24):
$$(e^{x+y} + ye^y)dx + (xe^y - 1)dy = 0$$
, $y(0) = -1$

use Theorem1 or Theorem2

Question: Find integrating factor and Solve the initial value problem

1) Check the Exact ODE

(1)
$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} (e^{x+y} + ye^y) =$$

(2)
$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(xe^y - 1) =$$

2) Theorem

(1) Theorem 1:
$$R = \frac{1}{Q}(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) = \frac{1}{xe^y - 1}(e^{x+y} + e^y + ye^y - e^y)$$

(2) Theorem 2: $R^* = \frac{1}{P} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) = \frac{1}{e^{x+y} + ye^y} (e^y - e^{x+y} - e^y - ye^y) = -1$

ENG1001, Chapter 1 - First-Order ODEs

- 3) Integrating factor
- 4) Exact ODE
- 5) Integration
- 6) Differentiate to get k(y)
- 7) Solution

 ${\sf ENG1001, Chapter\ 1-First-Order\ ODEs}$

ENG1001, Chapter 1 - First-Order ODEs

■ Linear (First Order) Differential Equation

$$y' + p(x)y = r(x)$$

unknown function y and its derivative y': Linear p(x): function of x

$$y' + p(x)y = 0$$
 \Rightarrow Homogenous Linear ODE $r(x) = 0$
 $y' + p(x)y = r(x) \neq 0$ \Rightarrow Nonhomogenous Linear ODE $r(x) \neq 0$

▶ Solution of Homogeneous Linear (First Order) Differential Equation

$$y' + p(x)y = 0 \implies \frac{dy}{dx} = -p(x)y \implies \frac{dy}{y} = -p(x)dx$$

$$\implies \ln|y| = -\int p(x)dx + c^*$$

$$\implies y = ce^{-\int p(x)dx}$$

if c=0, y=0 trivial solution

ENG1001, Chapter 1 - First-Order ODEs

35

► Solution of Non-homogeneous Linear (First Order) Differential Equation

if exact: good

if non-exact ⇒ integrating factor ⇒ exact ODE

$$y' + p(x)y = r \implies (py - r)dx + dy = 0 \implies Pdx + Qdy = 0$$

 $P = (py - r), \quad Q = 1 \implies \text{non-exact}$

Need to find integrating factor F(x) (Theorem 1)

$$R = \frac{1}{O} \left(\frac{\frac{\text{TP}}{P}}{\frac{\text{TQ}}{Q}} - \frac{Q}{x} \right) = p ? \quad F \quad \exp\left(\frac{1}{O} R dx \right) ? \quad F \quad e^{O^{pdx}}$$
 (slide 30)

Multiplying by integrating factor

$$e^{\frac{r}{2}dx}(y \Leftrightarrow py) = e^{-pdx}r ? e^{\frac{r}{2}dx}y \quad y(e^{-pdx}) \Leftrightarrow (e^{\frac{r}{2}dx}y) = e^{-pdx}r$$

$$? e^{\frac{r}{2}dx}y \quad \grave{o}e^{-pdx}rdx + c$$

$$? \quad y = e^{-h}(\frac{r}{2}h^{r}rdx + c), \qquad h = -pdx$$

ENG1001, Chapter 1 - First-Order ODEs

■ Input and Output (p.29)

$$y' + p(x)y = r(x)$$
 $r(x)$: input,
 $y(x)$: output

$$y(x) = e^{-h} \stackrel{\text{def}}{=} rdx + ce^{-h}, \quad h = pdx$$

Total Output = Response to Input (r) + Response to Initial Data (c)

Ex 1.:
$$y' - y = e^{2x}$$

ENG1001, Chapter 1 - First-Order ODEs

■ Linear vs Nonlinear → Reduction to Linear Form (p.31)

Bernoulli Equation :
$$y' + p(x)y = g(x)y^a$$
 (a: any real number)

$$a = 0$$
 or $a = 1$: linear

 $a \neq 0$ and $a \neq 1$: nonlinear

Transform to Linear Differential Equation

$$y' + p(x)y = g(x)y^a \implies y' = g(x)y^a - p(x)y$$

Ex 4. (p.32): Logistic Equation

$$y' - Ay = -By^{2}$$
$$y' + p(x)y = g(x)y^{a} \implies a = 2 \quad u = y^{-1}$$

$$\Rightarrow p = A, \quad r = B, \quad h = \int p dx = Ax$$
 (Slide 38)

$$\Rightarrow u = e^{-h} \left(\int e^h r dx + c \right) = e^{-Ax} \left(\frac{B}{A} e^{Ax} + c \right) = ce^{-Ax} + B/A$$

$$\Rightarrow \therefore y = \frac{1}{u} = \frac{1}{(B/A) + ce^{-Ax}}$$

ENG1001, Chapter 1 - First-Order ODEs

▶ Summary of the Solution of (First Order) Linear Differential Equation

$$y'+p(x)y=r(x) \implies y=e^{-h}\left(\int e^h r dx+c\right), h=\int p dx$$

When
$$p = 0$$
, $r = 0$: $y' = 0$ $\Rightarrow y = c$

When
$$r=0$$
 : $y'+py=0 \Rightarrow y=ce^{-\int p(x)dx}$

When
$$p = 0$$
, $r = 0$: $y' = 0$ $\Rightarrow y = c$
When $r = 0$: $y' + py = 0$ $\Rightarrow y = ce^{-\int p(x)dx}$
When $p = 0$: $y' = r$ $\Rightarrow y = \int rdx + c$

1.6 Orthogonal Trajectories

- **■** Orthogonal Trajectories
 - ⇒ Family of Curves at right angle
- (1) G(x,y,c)=0

ex)
$$x^2 + 2y^2 - 2c^2 = 0$$

$$\therefore \frac{1}{2}x^2 + y^2 = c^2$$

 $x^2 + 2y^2 - 2c^2 = 0$ $\therefore \frac{1}{2}x^2 + y^2 = c^2$ tips: orthogonal – perpendicular – right angle

Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space):

Elliptic equipotential curves (equipotential surfaces) and orthogonal trajectories (parabolas)

ENG1001, Chapter 1 - First-Order ODEs

Procedures

Summary - Chapter 1

$$y' + p(x)y = r(x)$$

- ▶ General Solution: contains an arbitrary constant (c) $y = \sin x + c$
- ▶ Particular Solution: contains a specific constant (c = 2) $y = \sin x + 2$
- Separable: Separate the variables x and y

$$g(y)y' = f(x)$$
 \Rightarrow $g(y)dy = f(x)dx$ (: $y' = \frac{dy}{dx}$)

- ► Non-separable ⇒ reduce to separable form
- ► Exact ODE $M(x, y)dx + N(x, y)dy = 0 \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
 - Non-exact ⇒ reduce to exact form integrating factor
- ▶ Homogeneous and Linear: Separable or Exact ODE
- ▶ Nonlinear
 - ► Nonlinear ⇒ reduce to linear form

ENG1001, Chapter 1 - First-Order ODEs

Homework Assignment - Chapter 1

Assignment # 1-1

Due: Next week

Section 1.1: 6, 10, 12

Section 1.3: 2, 8, 12, 17

Assignment # 1-2

Due: Next week

Section 1.4: 4, 9, 13

Section 1.5: 4, 10, 23, 24

Section 1.6: 9

ENG1001, Chapter 1 - First-Order ODEs

Announcement: Quiz

March 20: Chapter 1

Closed book

ENG1001, Chapter 1 - First-Order ODEs

Homework Assignment - Chapter 1

ENG1001, Chapter 1 - First-Order ODEs

47

1.4 Example : Quiz or Mid-term exam

Example.
$$(x^3+3xy^2)dx + (3x^2y + y^3)dy = 0$$

Step 1: Test for Exactness

Step 2: Solving Exact Differential Equation

ENG1001, Chapter 1 - First-Order ODEs

In order to find k(y)

Step 3: Checking

ENG1001, Chapter 1 - First-Order ODEs

49

1.4 Quiz or Mid-term Exam

Example.
$$2\sin(y^2)dx + xy\cos(y^2)dy = 0$$
, $y(2) = \sqrt{\pi/2}$

Step 1: Test for Exactness

$$P = 2\sin(y^2),$$
 $Q = xy\cos(y^2)$
 $\Rightarrow P_y = 4y\cos(y^2)$ $Q_x = y\cos(y^2)$ \Rightarrow non-exact

Step 2: Find integrating factor F(x)

$$R = \frac{1}{Q}(P_y - Q_x) = \frac{1}{xy\cos(y^2)} [4y\cos(y^2) - y\cos(y^2)] = \frac{3y}{xy} = \frac{3}{x}$$

$$\Rightarrow \int R(x) = \int \frac{3}{x} dx = 3\ln|x|$$

$$\Rightarrow \therefore F(x) = \exp(\int R dx) = \exp(3\ln|x|) = \exp(\ln|x^3|) = x^3$$

Multiplying by $F(x) = x^3$

ENG1001, Chapter 1 - First-Order ODEs

$$FPdx + FQdy = 2x^{3}\sin(y^{2})dx + x^{4}y\cos(y^{2})dy = 0$$

$$\frac{\partial}{\partial y}[2x^{3}\sin(y^{2})] = 4x^{3}y\cos(y^{2}) = \frac{\partial}{\partial x}[x^{4}y\cos(y^{2})] : \text{Exact } !!$$

Step 3: Solve Exact Differential Equation (General solution)

$$M = u_x = 2x^3 \sin(y^2), \qquad N = u_y = x^4 y \cos(y^2)$$

$$\Rightarrow u = \frac{x^4}{2} \sin(y^2) + k(y), \qquad u_y = x^4 y \cos(y^2) + \frac{dk}{dy}, \qquad \frac{dk}{dy} = 0, \quad k = c^*$$

$$\Rightarrow \therefore u = \frac{x^4}{2} \sin(y^2) = c$$

Step 4: Find particular solution

Initial condition
$$y(2) = \sqrt{\pi/2}$$

 $\Rightarrow 8\sin(\pi/2) = 8 = c$
 $\Rightarrow x^4 \sin(y^2) = 16$
ENG1001, Chapter 1 – First-Order ODEs

51

1.6 Orthogonal Trajectories

- Orthogonal Trajectories
 - ⇒ Family of Curves at right angle

(1) G(x,y,c)=0
ex)
$$x^2 + y^2 - c^2 = 0$$
 $\therefore x^2 + y^2 = c^2$
tips: orthogonal – perpendicular – right angle

Fig. 22. Equipotential lines and curves of electric force (dashed) between two concentric (black) circles (cylinders in space)

ENG1001, Chapter 1 - First-Order ODEs

Procedures

У

- 1) y' Slope
- 2) $\tilde{y}' = -\frac{1}{y'}$ ($y'\tilde{y}' = -1$: orthogonal)
- 3) ĵ
- 4) plot

ENG1001, Chapter 1 - First-Order ODEs

53

Example (p.35)

$$y = cx^2$$
 $\therefore G(x, y, c) = y - cx^2 = 0$

step1.

ENG1001, Chapter 1 - First-Order ODEs

